International Journal of

ISPYS Geo-Information MD\Py

Article
Towards Integrating Heterogeneous Data: A Spatial
DBMS Solution from a CRC-LCL Project in Australia *

Wei Li *\, Sisi Zlatanova ©/, Abdoulaye A. Diakite'”, Mitko Aleksandrov'” and Jinjin Yan

Faculty of the Built Environment, The University of New South Wales, Kensington 2052, Australia;
s.zlatanova@unsw.edu.au (S.Z.); a.diakite@unsw.edu.au (A.A.D.); mitko.aleksandrov@unsw.edu.au (M.A.);
jinjin.yan@unsw.edu.au (J.Y.)

* Correspondence: wei.li@unsw.edu.au

t This Paper Is an Extended Version of Our Paper Published in GI45DG 2019.

check for

Received: 30 December 2019; Accepted: 19 January 2020; Published: 21 January 2020 updates

Abstract: Over recent decades, more and more cities worldwide have created semantic 3D city
models of their built environments based on standards across multiple domains. 3D city models,
which are often employed for a large range of tasks, go far beyond pure visualization. Due
to different spatial scale requirements for planning and managing various built environments,
integration of Geographic Information Systems (GIS) and Building Information Modeling (BIM)
has emerged in recent years. Focus is now shifting to Precinct Information Modeling (PIM) which
is in a more general sense to built-environment modeling. As scales change so do options to
perform information modeling for different applications. How to implement data interoperability
across these digital representations, therefore, becomes an emerging challenge. Moreover, with
the growth of multi-source heterogeneous data consisting of semantic and varying 2D /3D spatial
representations, data management becomes feasible for facilitating the development and deployment
of PIM applications. How to use heterogeneous data in an integrating manner to further express
PIM is an open and comprehensive topic. In this paper, we develop a semantic PIM based on
multi-source heterogeneous data. Then, we tackle spatial data management problems in a Spatial
Database Management System (SDBMS) solution for our defined unified model. Case studies on the
University of New South Wales (UNSW) campus demonstrate the efficiency of our solution.

Keywords: SDBMS; built environment; PIM; 3D city model; CityGML; IFC

1. Introduction

Due to the strong expressive power of visual 3D city models, many real-world regions model 3D
geometry and graphical characteristics, as well as spatial and semantic interrelationships as a semantic
3D city model. With the proliferation of 3D city model applications [1], such as urban planning [2],
environmental simulations [3], navigation [4], disaster management [5], and energy assessment [6],
significant research efforts have been devoted to efficiently and effectively managing and analysing
3D city models that carry rich semantic and spatial information. Among them, Spatial Database
Management System (SDBMS) is a promising field to support data fusion and semantic explorations
to get a better understanding of the built environment [7].

Geographic Information Systems (GIS) emerged in the 1970s [8], and recently, Building
Information Modeling (BIM) [9] was proposed to cater to the needs of planners and architects,
respectively [10]. Moreover, as different data models are increasingly employed, requiring
multi-dimensional and multiple ways in which data are viewed and understood. Semantic ontologies
have been designed to give a clearer understanding of spatial bounds and context of geospatial
data [11]..Semantic. GIS needs.to manage space outside of only physical bounds in a more abstract

ISPRS Int.j..Geo-Inf. 2020, 9; 63; doi:10.3390/ijgi9020063 www.mdpi.com/journal/ijgi

www.manaraa.com

http://www.mdpi.com/journal/ijgi
http://www.mdpi.com
https://orcid.org/0000-0003-0998-5435
https://orcid.org/0000-0002-8766-0487
https://orcid.org/0000-0003-0119-6124
https://orcid.org/0000-0002-7030-024X
https://orcid.org/0000-0003-3140-3462
http://dx.doi.org/10.3390/ijgi9020063
http://www.mdpi.com/journal/ijgi
https://www.mdpi.com/2220-9964/9/2/63?type=check_update&version=2

ISPRS Int.]. Geo-Inf. 2020, 9, 63 2 of 30

format. Urban planning and design usually model GIS-BIM information at the precinct scale.
Precinct Information Modeling (PIM) as proposed in 2017 [10] was conceived as a digitally enabled
information platform consisting of a set of standards and protocols (including CityGML and IFC) that
could harmonize and direct the fragmented activity involving urban modeling of large spatial and
semantic datasets at the precinct scale.

At precinct scale, the volume of data required to effectively model the built environment expands
significantly beyond that required for an individual building. How to organise that scale of data
becomes a significant issue. Spatial Database Management System (SDBMS) plays a central role as
data integration and handing platforms for geo-referenced 2D and 3D data in multiple application
scenarios. In the meanwhile, 3D urban planning and modeling work under different standards (e.g.,
CityGML [12] and IFC [13]), can be supported by SDBMS to efficiently store and retrieve plans, maps
and 3D models. SDBMS extends the traditional relational database management system (RDBMS)
by incorporating spatial data types and functions/operations on the supported data types in its data
model [14].

1.1. Existing Approaches and Challenges

The continuous development and maintenance of assets, infrastructure, facilities and logistics at
built-environment planning and design requires management of a broad spectrum of heterogeneous
data. Estate management (EM) departments and stakeholders such as companies, councils, institutions,
researchers and residents are constantly involved in the use and exchange of critical information in
the context of the built environment. Much of this information concerns infrastructural or sensor
components that are physically distributed in different departments, which leads to unitary use of
data. For instance, the power sector can only realize the statistical results of the power consumption of
buildings; however, there is no way for them to make decisions or optimise energy supply through
connecting the building (inner/outer)-structure information mastered by EM department.

Majority of current 3D city models are designed by making use of either the CityGML or IFC
standard. Some research towards interoperating CityGML and IFC models has been developed to
transform information towards the generation of knowledge and intelligence in recent years [15-17].
However, as BIM and GIS data are created, managed and visualised in different ways in terms of
coordinate systems, scope of interest and data structures, data incompatibility is becoming a significant
issue. Moreover, the sharp and recent increase in the availability of data captured by different
data sources combined with their considerably heterogeneous nature opens up the possibility of
using multimodal datasets in a joint manner to further improve the performance of the processing
approaches with respect to the application at hand. Multi-source data fusion, as a general and popular
multi-discipline approach, therefore, has received enormous attention [18].

1.2. Contributions

This paper presents a spatial DBMS solution for the management of the integrated 3D city model
at precinct scale that is based on multi-source heterogeneous data fusion. First, we create a PIM
integrating semantics, geometry and graphical characteristics of built-environment objects at campus
scale. Then, we conduct case studies on the UNSW campus. The empirical studies confirm that our
unified 3D city model improves understanding of the built environment around the university campus.

Our primary contributions are as follows:

1. A novel perspective on PIM is proposed considering multi-source heterogeneous data for the
sake of improving the potential values and interpretation performance of the built environment
at campus scale.

2. A general conceptual design and relational database design has been developed for unified 3D
city model in an integrating manner.

3. A usability analysis of our SDBMS solution through a real-world campus model.

www.manaraa.com

ISPRS Int.]. Geo-Inf. 2020, 9, 63 3 0f 30

1.3. Organization

The rest of this paper is structured as follows: Section 2 gives a brief retrospect to the 3D city
models and data fusion. In addition, the essential aspects and approaches for geo-data modeling using
spatial DBMS are discussed to provide the foundation for designing a unified and compliant relational
database schema for PIM. Sections 3 and 4 presents our PIM fusing multi-source heterogeneous data
(GIS, BIM, LiDAR and sensor) with details about the conceptual design and relational database design.
A case study on the UNSW campus to demonstrate the usability and efficiency of our model is shown
in Section 5. The last section draws the conclusions about the presented work and outlines the relevant
aspects of our future research and developments tasks.

2. Background and Related Work

2.1. 3D City Models and PIM

A 3D city model is a representation of an urban environment with a three-dimensional geometry
of common urban objects and structures, with buildings as the most prominent feature [1,19,20].
Seemingly, visualization dominated the early uses of 3D city models. However, as technology
developed, 3D city models have become valuable for several purposes beyond visualization, and
are used in many domains (e.g., visibility analysis, 3D cadaster, infrastructure planning, indoor
navigation, energy demand estimation). Because each 3D application requires its own specific 3D data,
a comprehensive inventory can help to link the requirements to specific applications. The urban design
spans planning and architecture as well as the GIS-BIM information and modeling environments,
operating primarily at the precinct scale. Precinct Information Modeling (PIM) is proposed in 2013 [10]
as the central to this scale of urban innovation. As demonstrated in Figure 1, the spatial scales
for built-environment modeling range from general objects to buildings and upwards to cities and
countries. With the need for data interoperability, different types of information modeling application
based on multiple scales (i.e., BIM -> PIM -> GIS) arose in recent years. Here, the scale we talk about in
PIM is more about the scope of the modeling, while, the level of detail in CityGML and IFC indicate
less or more detail of the same object regarding both their geometry and thematic.

Country

State

City

PIM Neighbourhood

Figure 1. Spatial information platforms for the built environment (Source: ref. [10]).

R fyl_llsl

www.manharaa.com

ISPRS Int.]. Geo-Inf. 2020, 9, 63 4 of 30

2.2. Smart Built Environment and Data Fusion Opportunities

With the emergence of the concept of “Smart Built Environment”, which refers to a built
environment that has been embedded with smart objects, such as sensors and actuators, with
computing and communication capabilities, making the environment sufficiently “smart” to interact
intelligently with and support their human users in their day-to-day activities [21], researchers have
explored how to design building models hosting multiple information throughout its life cycle and
what is the benefit of harnessing BIM or GIS information and capabilities (see [22]).

Currently, an enormous amount of data is produced in a quick span of time in the built
environment. How to make these multiple sources data precise and highly accurate is an open
problem which needs to be considered since the quality of this information plays an important role
in visualization, planning and decision-making. Data fusion [23,24], which is regarded as a part
of data integration, is an effective process of integration of multiple data representing the same
real-world object into a consistent, accurate, and useful representation. Figure 2 presents the paradigm
of general data fusion. For example, there are several construction datasets for general building
domain generated by different data providers. Data fusion aims to merge these datasets into a database
with a consistent data schema, through a process of ingestion, duplicate removal and integration.
The records (from different datasets) describing the same object, e.g., a commercial building, are
generated in the same domain.

' IFJ,'-

Y c— o
Schema Mapping Domain Ontology

—

Transformation

| —| Crowdsourcing
"g AN e—
A

Figure 2. Paradigm of the data fusion.

z g Semz_mt_ic
o] Semantic = De;crlrtnon
= Extracti i uality
.)) |0 xracton Dupllcate é Management

Object —» Domain —» = > W Removal o]]
o Geometry w Validity Checking
Z =
- =

2.3. Geo-data Modeling in Spatial DBMS

Spatial-database management system (Spatial DBMS) [14] is usually considered to be mainstream
relational Database Management System (DBMS) with the extension which incorporates spatial data
types and geometry, support for spatial indexes, and provides functions and operations for analysis
and processing of spatial objects. Concepts developed in the fields of Spatial DBMS may be applied to
both 2D and 3D geo-applications [7,25,26].

In a given spatial DBMS, data may be modeled in classes as parts of an object-oriented geo-model.
Applications relying on geo-models have distinct needs: some applications may require models only
for visualization, while others may require models for analysis and statistics. Defining implementations
for geo-models that provide efficient storage and retrieval of the models in spatial databases received
enormous attention from researchers. Mapping is often necessary to convert a conceptual geo-model
used for visualization into a physical geo-model stored in the spatial database. The heterogeneity
of current geospatial geometric and topological data models shows the importance of integration
for spatial DBMS. Figure 3 presents an integrated spatial DBMS. For example, there are multiple
data sources with different data formats, such as reports, images, maps, shapefiles. After data

www.manaraa.com

ISPRS Int.]. Geo-Inf. 2020, 9, 63 5 of 30

pre-processing, GIS, BIM and Point Cloud data with the spatial data type or geometry are stored in
spatial databases.

t

GIS BIM

®

Point Cloud

:/.--- '---E-roceed DataJ . _../,....
Data Sources |

— 1

«“

Integrated
Data

"'____ Spatial-database ____/"'

Figure 3. An integrated spatial DBMS.

2.4. CityGML and IFC Standards

Building Information Modeling (BIM) is a digital representation of a facility’s physical and
functional characters [27]. It is based on technology incorporating information in three dimensions
(3D) and integrates the necessary information required by Architecture, Engineering, Construction
and Facilities Management (AEC/FM). In contrast, Geographic Information Science (GIS) is
developed to manage and analyze spatial data, which is based on geomatics technologies. GIS
as a technology/system allows the storage of spatial information in the relational database, and,
as a science, is also beyond the data storage system. The attribute information associated with
spatial features stored in the database allows for further spatial analysis using both the spatial and
non-spatial attributes.

Due to wider availability of information, ease of analysis and for pragmatic reasons, the studies
on the exchange of BIM and GIS data often focus on the two most prominent open standards in the two
domains: the OGC standard CityGML [12] for the 3D GIS domain, and the Industry Foundation Classes
(IFC) [13] for the BIM domain. IFC models represent the physical elements of single constructions
in great detail, while CityGML models represent entire cities in a simpler format that is usable
for exchange, dissemination and spatial analyses, such as solar potential and energy consumption
estimations. The two modeling paradigms embodied by IFC and CityGML are representative of BIM
and 3D GIS data in general, and they are both widely used in their respective domains.

2.5. Related Work for CityGML and IFC Integration

BIM and GIS interpret 3D modeling from two different perspectives: GIS focuses more on
real-world modeling, while BIM is more focused on the design process. Therefore, in CityGML,
for example, a wall is represented as the surface for each room separately, while in IFC, a wall is
a volume object, which is shared between rooms and the exterior shell [28]. The real-world modeling
of GIS is driven by the requirements of mapping tasks, while the design modeling of BIM is based
on the representation of geometric design and construction details [29]. Considering buildings, GIS
often focuses on the geographical information and shape of buildings and building components from
a geographical perspective. In contrast, BIM often focuses on the detailed building components, such
as architecture and construction perspective [30]. With the recent demand for merging outdoor and
indoor applications [31] for different purposes, attempts have been made to design methods and tools
to integrate building models within a geospatial context.

The integration system of BIM and GIS enables the effective management of information in various
stages.of a-project’slife.cycle,namely planning, design, construction, operation, and maintenance [17].

www.manaraa.com

ISPRS Int.]. Geo-Inf. 2020, 9, 63 6 0f 30

The information at any spatial and temporal scale can be available in such a system for different
applications. Effective management of heterogeneous information from different sources can also
provide essential supports for decision-making.

3. Precinct Information Modeling (PIM) with Data Fusion

In this section, we describe spatial database solution for a high-level unified model at the
precinct scale with multi-source data fusion which encapsulates both the CityGML and IFC standards.
The following subsections explain the process of data modeling. Important design decisions are
pointed out. The two main steps are marked as conceptual design and relational database design in
Figure 4.

1. A Unified Model at Precinct Level (Section 3)
To achieve a more compact database schema and improve query performance, the CityGML and
IFC model are combined into a simple and unified model at some critical points.

2. Derivation of the Relational Database Schema (Section 4)
The unified object-oriented data model has been mapped to relational tables. The number of
tables were optimized to minimize the number of joins for typical queries.

o Conceptual Data Model
g ™, Conceptual Design

| Domain | ::> % __| . Entities/Subtypes

serbut v Attributes
Relationships

Integrity Rules

;

Classz

Relational DB Design

Physical Data Model

R N Bsyee
attr 2

+ Columns

- « Keys/Iindices
. Triggers

Database

Uis

Figure 4. The process of data modeling.

Design decisions in the model are explicitly visualized within the UML diagrams. To enhance the
readability of the UML diagrams, classes are depicted in different colours if they belong to different
standards/models. The following colouring scheme is applied:

e C(lasses painted in belong to the pure CityGML model which is subject of discussion in
the following subsections.
o C(lasses painted in belong to the pure IFC model.

e C(Classes painted in BLUE are integrated objects from both IFC and CityGML model which are
defined in Section 3.2.1.

o C(lasses painted in are.from sensor data, such as gas and electricity.

www.manaraa.com

ISPRS Int.]. Geo-Inf. 2020, 9, 63 7 of 30

3.1. Conceptual PIM at Campus Scale

The design and management of our 3D campus model generally focus on two aspects: architecture
and sensing. The architecture refers to that provided by our model to support the lifecycle of
a construction project, including plan, design, construction, operation, and dismantling, also provide
analysis and visualization of location-based services. Thus, we adopt the IFC model which includes
building structures and appearances, as well as CityGML model which is used for spatial analysis based
on the functional and physical relationship of the outdoor environment. On the other hand, sensing is
considered to be one essential component of our campus model. Room/Building-based sensor-driven
services can come into being and stakeholders can make use of the outcome of sensor-driven services to
trigger more services, enhance or improve the current design to use resources more wisely. Our novel
unified 3D campus model hosts the collaborative architectural information and provides the semantic
knowledge of the campus. With the emergence of smartly built environment tendency, our model
should be further developed to be capable of seamlessly integrating smart objects in campus design
and feed objects with relevant building-related information.

In this section, our slightly unified 3D campus model with respect to CityGML and IFC models
is described at the conceptual level using UML class diagrams. This diagram forms the basis for the
implementation-dependent realization of the model with a relational database system. Figure 5 shows
the conceptual design of our integrated model where different colors are used to represent different
class definitions for the most important types of objects within virtual 3D campus models which are
briefly described below. Following categories are presented in this integrated campus model:

e Building

e Sensor

e City furniture
e Terrain

e Transportation
e Vegetation

e Landuse

class Conceptual Model /

«object» 5 egend
CampusObject «object»
P ! ExternalReference D Abstract Class
1

+ creationDate: xs::date [0..1] > — (] cityamL object
+ ID:int + name: xs::string (] e object
’ + uri: xs::anyURI f
+ terminationDate: xs::date [0..1] U D Sensor Object
[external Object
[f (] unified object
«object» «object» «object» «object» «object»
LandUse Model: CityFurniture Model:: Terrain Model:: Sensor Model:: Building Model::
:LandUse CityFurniture Terrain Sensor Building

«object»
Vegetation Model::
Vegetation

«object»
Transportation Model::
Transportation

Figure 5. UML diagram of thematic top-level classes.

The aim of explicit modeling is to reach a high degree of semantic interoperability between
different applications. By specifying the thematic concepts and their semantics along with their
mapping to UML, different applications can reply on a well-defined set of object types, attributes,
and geometries. The base class of all thematic classes within our data model is the abstract class
Campus0b ject, which provides a creation and a termination date for the management of histories of
objects as well as generic attributes and external references to corresponding objects in other data sets.

www.manaraa.com

ISPRS Int.]. Geo-Inf. 2020, 9, 63 8 0f 30

Such a reference named ExternalReference denotes the external information system and the unique
identifier of the object in this system. The subclasses of Campus0bject comprise the different thematic
fields of a campus model, in the following covered by separate models: building model (Building),
city furniture model (CityFurniture), digital terrain model (Terrain), land use model (LandUse),
transportation model (Transportation), vegetation model (Vegetation), and sensor model (Sensor).
In terms of specific class Building, it covers both IFC and CityGML building models (The detail of
these two separate models can be found in Appendixes A and B.).

3.2. Building Model

3.2.1. Integrated Building Model (IBM)

Building model is the class capturing information about spatial structures and building objects
from both BIM and GIS data in our 3D campus model. It can also facilitate modeling a database
schema that can carry data that is required for all level of details (LODs). The Integrated Building
Model (IBM), therefore, used as the integrated model for importing pure IFC and CityGML building
model provided by different stakeholders. Also, we present our methods for converting objects from
IFC and CityGML to those in the proposed IBM (see Figure 6).

To build an integrated building model, all classes with their concepts are collected from both
CityGML and IFC models. Overlapping concepts are merged and therefore new objects need to be
created in such a way that objects from both models can be captured. Figure 6 shows the integrated
building model, which is briefly described below.

Based on the CityGML model, the building model allows the representation of simple buildings
that consist of only one component, as well as the representation of complex relations between
parts of a building. Therefore, it provides the subclass Building and BuildingPart of the pivotal class
_AbstractBuilding. However, in the IFC model, only one class, IfcBuilding is used for representing the
basic building structure. For convenience, we create a unique class Building that merges concepts of
IfcBuilding and _AbstractBuilding to denote simple or complex buildings.

Based on the IFC model, a building is used to provide a basic element within the spatial structure
hierarchy for the components of a building project together with site, storey, and space. Therefore,
a building must have at least one storey (named BuildingStorey in IBM) which has an elevation
attribute as a local height value relative to the top of the construction slab. A space in IFC represents
an area or volume bounded actually or theoretically within a building. However, a building in
CityGML consists of rooms which can be regarded as a space surrounded by different boundary
surfaces. Therefore, we create a class Space which copies IfcSpace object. We link LOD2 to LOD4
boundary surface objects _BoundarySurface with space object, where boundary surfaces are used
for structuring the exterior shell of a building and visible surfaces of a room. Both IFC and CityGML
contain opening object; however, in CityGML it is the abstract base class for semantically describing
openings like doors or windows (rf. Figure 7), while the opening element in IFC represents a void
within any element that has physical manifestation and it has to be inserted into an IfcBuildingElement
like IfcDoor and IfctWindow. Here, we create an abstract class _0Opening including attribute list in
IfcOpeningElement, and two specific class Door and Window. _Opening objects in IBM only exist in
models of LOD3 or LOD4 and each one is associated with a gml:MultiSurface geometry.

www.manaraa.com

ISPRS Int.]. Geo-Inf. 2020, 9, 63 9 of 30

class Integrated uilding Model)

Legend
[cirveML oect
(O rrc object.

[inegrred object

cobjects
Outerfloor

«objects
lod2MultiSurface: gml:MultiSurfacePropertyType (0.1]

lod3MultiSurface: gml:MultisurfacePropertyType [0.1]

lodaMultiSurface: gml:MultiSurfacePropertyType (0.1]

opening: OpeningPropertyType [0.]

«oblecty
BuildingFuriture. _Buildinginstallation

class: BuildingFurnitureClassType [0.1]

function: BulldingFurnitureFunctionType [0.*]
lod4Geometry: gm:GeometryPropertyType [0.1]
usage: BulldingFurnitureUsage 0]

‘boundedBy: BoundarySurfacePropertyType [0..1]

ass: BuidinginsallationClassType [0.1]

function: BuildinglnstallationFunctionType [0.."]
etry: gml:GeometryPropertyType [0..1]

lod3Geometry: gml:GeometryPropertyType [0.1]
loddGeometry: gml:GeometryPropertyType [0.1]
usage: BuildinginstallationUsageType [0.%]

mmmn

Figure 6. UML diagram of integrated building model (IBM).

www.manaraa.com

CJ'IJILL:_J‘IJJZI‘ I_‘d)l
),

ISPRS Int.]. Geo-Inf. 2020, 9, 63 10 of 30

o *

Wall / a \\ InteriorWall
Surface Surface

i i

i

/ |

E A Opening

: Door

Figure 7. Classification of Openings (Source: ref. [12]).

Building element comprises all elements that are primarily part of the construction of
a building. However, elements in CityGML are not explicitly defined but they can be represented
as an explicit aggregation of IntBuildingInstallation and BuildingInstallation. In this case, we merge
IntBuildingInstallation and BuildingInstallation into one abstract class called _BuildingInstallation,
which is used for building elements like balconies, chimneys, dormers or outer stairs, strongly affecting
the outer appearance of a building, and objects within a building which (in contrast to furniture) cannot
be moved. A _BuildingInstallation may have the attributes class, function, usage, and geometry.

Considering building elements, we create an abstract class named _BuildingElement which
contains several subclasses. To be able to populate them, we need to reorganize objects from
CityGML and IFC belonging to the interior or exterior building installations. In IFC, there is a class
named IfcBuildingElement which includes all elements that are primarily part of the construction of
a building. We divide them into different classes based on the concepts of IntBuildinglnstallation
and BuildingInstallation in CityGML. In this case, building elements like chimney, column, stair,
railing which exists in both model and we can combine them into one unified class like Chimney,
Column, Stair, and Railing. In addition, other elements only in IFC while belong to building
installation (such as Slab, StairFlight, Member, Beam, Plate, Ramp) are to be also added as subclasses
of _BuildingInstallation in IBM.

Moreover, room furniture, like tables and chairs, can be represented in the CityGML building
model with the class BuildingFurniture. A BuildingFurniture may have the attributes class, function,
usage, and geometry. A BuildingFurniture object should be uniquely related to exactly one room object.
However, in IFC, movable part of a building, such as a chair or furniture, are not been considered.
Therefore, we straightforward create class BuildingFurniture from CityGML model in IBM. All the
geometry of the interior of a building is in LOD4, the highest level of resolution. We can regard
BuildingFurniture as the subtypes of new _BuildingElement class and only accept objects from
CityGML building model.

For other building elements not belonging to class _BuildingInstallation, we have defined
some new concepts in such a way that all concepts from both IFC and CityGML can be covered.
The difference between these building elements in CityGML and IFC is the representation of different
surfaces, interior and exterior parts of a building (wall, covering and ground). Figure 8 shows the
classification of _BoundarySurface in CityGML of the outer building shell. Because of the need for
different LOD representations and definitions of elements, such as (roof, ceiling) and (ground, floor),
we have defined the building elements as follows:

° _Wall is a vertical/semi-vertical element that surrounds or subdivides spaces. It has
three subtypes:

www.manaraa.com

ISPRS Int.]. Geo-Inf. 2020, 9, 63 11 0f 30

InteriorWall for an internal wall between rooms or spaces (none of its faces has connection

with the outer environment);
ExteriorWall for an external wall that has connection with the outer environment and

represents a part of external facades of a building;
CurtainWall for the outer wall that covers a complete facade of a building or a part of it.

e _Covering is a closing level that covers a space from the top side. It has three types:

Roof for the top covering of a building or the top storey which gives the external shape of
a building from above;

- Ceiling for the internal covering of any space in a building;

— OuterCeiling for the external covering.
e _Level is a walkable (not only horizontal) level that represents the bottom level of a space. It has

three types:

Ground for the bottom level of ground floor which has a connection to the outer ground to
give the external shape of a building from the bottom level;
Floor for the bottom level of a space in any space of a building except the bottom

(lowest) storey;
OuterFloor for the horizontal surface belonging to the outer building shell and with the

orientation pointing upwards.

e

&

&
N0
& % & o
& N & <!s,o“" £
OuterFloorSurface
OuterCeiling Surface

Ground Surface Ground Surface

allSurface
*Po%
<,
}
g
yf
rd

OuterCeilingSurface

OuterFloorSurface

WallSurface

WallSurface
WallSurface
WallSurface

WallSurface

WallSurface
WallSurface

WallSurface

GroundSurface

Figure 8. Examples of the classification of _BoundarySurfaces in CityGML of the outer building shell
(Source: ref. [12]).
3.2.2. Conversion from IFC & CityGML to IBM

In this section, we present our method for converting IFC & CityGML to our integrated building
model. First, we define a set of rules which describe how the objects in our integrated building model

can be produced from both IFC and CityGML models.

From IFC to IBM

Transformation rule from IFC to IBM. Usually, IFC model is used for representing the detail
of internal part of a building, which can be regarded as the supplement to the architectural details.
Therefore, we only consider IFC model in the LOD3 and LOD4 of IBM.

Ol LA Zyl—ﬂbl waw. manaras.com

ISPRS Int.]. Geo-Inf. 2020, 9, 63 12 of 30

At LOD3, parts of external objects and internal elements of building structure are represented.
The information needed for BuildingStorey and Space can directly be acquired from IfcBuildingStorey
and IfcSpace. In IFC, we have building elements (IfcBuildingElement) and opening elements
(IfcOpeningElement). An IfcOpeningElement must be inserted into an IfcBuildingElement by using the
IfcRelVoidsElement relationship. It may be filled by an IfcDoor, IfcWindow, or another filling element by
using the relationship IfcRelFillsElements. Geometric information about doors and windows are defined
as Sweeping and CSG models as other building elements (e.g., walls and slabs). In our proposed
model, we adopt BRep geometry for opening elements as in CityGML. Therefore, conversions from
Sweeping/CSG geometric models that are used in IFC to BRep models need to be performed.

At LOD4 of the IBM, all objects of a building structure, i.e., building elements (interior wall, ceiling,
floor, etc.), building furniture, boundary surface are represented. As all IFC objects, Sweeping/CSG
geometry is used for spaces and their elements which requires conversions to BRep geometric models
that we use in the IBM. To create spaces in the UBM, information from IfcWall, IfcRoof and IfcSlab that
form the boundaries of rooms are used. It is important here to mention that information of all building
elements that form a space is stored in _ButldingElement class.

From CityGML to IBM

Similar to the conversion from IFC to IBM, we define a set of rules that describe how the objects
in our model can partially be produced from CityGML model. The rules are given in the following
description for different level of details.

At LOD1, a building model consists of a generalized geometric representation of the outer shell.
Due to no information needed from IFC at this level of detail, _AbstractBuilding object can directly be
conformed as Building object in IBM and it may carry gml:MultiCurve and gml:Solid geometries to
cover the outer shell.

At LOD2, the exterior shell of a building starts to be decomposed into details. CityGML
_BoundarySurface represents the base class for all other objects that form a building shell. At this
LOD, the only needed details are about: (i) the _Covering of a building and shapes of its roof and
outerceiling (from RoofSurface and OuterCeilingSurface); (ii) the _¥all of a building and surfaces
of its exterior walls with their details (from WallSurface); and (iii) the _Level of a building and
shapes of its ground and outer floor (from GroundSurface and OuterFloorSurface). In IBM, we keep
the same geometric model as that of CityGML (only consider the BRep), so there is no geometry
conversion during this phase. For building installations, the concept in the IBM is very close to that
of CityGML. Therefore, we can use one-to-one mapping of the BuildingInstallation geometries into
_BuildingInstallation geometries.

LOD3 denotes architectural models with detailed wall and roof structure potentially including
doors and windows. Information about objects that share the same horizontal level in one
building storey (or may be based on user definitions) can be aggregated to form BuildingStorey.
BuildingStorey geometrically describes by all spaces that share the same floor surface. These spaces
will be referenced from their boundary surfaces of RoofSurface, WallSurface and GroundSurface which
define the external shell of each storey. At this LOD, opening elements should also appear in the model.
Our concept of opening elements is similar to that of CityGML as door and window are subclasses of
the class opening. Therefore, one-to-one mapping can be done between _Opening, Window and Door
into corresponding classes in the IBM.

LoD4 represents the highest detailed LOD in which all the building elements, exteriors and
interiors, should be represented. For building furniture, we can directly perform one-to-one mapping
from BuildingFurniture in CityGML to BuildingFurniture in IBM. For _BoundarySurface, at this LOD,
the needed interior details are about: (i) the _Covering of a building and shapes of its interior
ceiling (from CeilingSurface); (ii) the _Wall of a building and shapes of its interior wall (from
InteriorWallSurface); and (iii) the _Level of a building and shapes of its floor (from FloorSurface).
Information about building elements is stored in different subclasses of the _BuildingElement

www.manaraa.com

ISPRS Int.]. Geo-Inf. 2020, 9, 63 13 of 30

class. Among them, for some objects belonging to building installations (such as chimney,
column, stair, railing), we map them from IntBuildingInstallation to into corresponding subclasses of
_BuildingInstallation in IBM. In addition, if the above subclasses have been created by IFC model,
we need to merge them together by importing geometries and specific attributes into existing ones. We
provide the set of conversion rules in the form of a table (Table 1).

Table 1. Transformation rules from IFC & CityGML to IBM.

LOD Mapping Rule
LOD1 _AbstractBuilding = _Building

RoofSurface = Roof
OuterCeilingSurface = OuterCeiling
WallSurface = ExteriorWall
GroundSurface = Ground
FloorSurface = OuterFloor
_BoundarySurface = _BoundarySurface
Buildinglnstallation = _BuildingInstallation

LOD2

IfcBuildingElement = _BuildingElement
[_Opening,IfcOpeningElement] = _0Opening
[Window,IfcWindow] = Window
[Door,IfcDoor] = Door
IfcWall = ExteriorWall
IfcCurtainWall = CurtainWall
IfcRoof = Roof
IfcSlab = Ground
[IfcWall, IfcRoof,IfcSlab] = _BoundarySurface
[IfcBuildingStorey, _BoundarySurface] => BuildingStorey

LOD3

[InteriorWallSurface,IfcWall] = InteriorWall
[CeilingSurface,IfcSlab] = Ceiling
[FloorSurface,IfcSlab] = Floor
[Room, _BoundarySurface] = Space
BuildingFurniture = BuildingFurniture
IntBuildinglnstallation = BuildingInstallation

LOD4

3.3. Sensor Model

The sensor model contains several different data sources without explicit geometry as shown in
Figure 9, which are donated by abstract classes _Sensor shown in UML diagram. There are various
types of sensor available, in which building, room, and timestamp are common attributes. Among them,
temperature sensors measure heat to detect changes in temperature, which may have Celsius attribute
representing a scale of temperature. Humidity sensors are used to measure the amount of water
vapor in the atmosphere. Gas and Air Quality sensors are used to monitor gas consumption and
changes to air quality, including carbon dioxide, carbon monoxide, hydrogen, nitrogen oxide, oxygen.
Electrical current (CT) sensors measure real-time energy consumption at a circuit, zone or machine
level. Knowing how much energy is being used has two main uses. First, one can identify where you
use and waste the most energy, allowing you to make savings. One can also automatically switch off
assets when they are not in use. These sensors may have a piece of textual information where they are
located (room, building, street), or in some cases even x, y, z coordinates of the measuring unit.

www.manaraa.com

ISPRS Int.]. Geo-Inf. 2020, 9, 63

14 of 30

class Sensor Model)

«object»
ExternalReference

1

«object»
CampusObject
A

«object» ‘

_Sensor

«object» . s
building: xs::string [0..1]

Building Model::

Building 0.7 4 rpom: xsz:string [0..1]
+ timestamp: xs::datetime [0..1]
«object» «object» «object» «object»
Electrical current (CT) Air Quality Humidity Gas

+ electricity: xs::double carbon dioxide: xs::double [0..1] ‘+ moisture: xs::doub\e‘ ‘+ gas: xs::double ‘ &

«object»
Temperature

celsius: xs::double

carbon monoxide: xs::double [0..1]
hydrogen: xs::double [0..1]
nitrogen oxide: xs::double [0..1]
oxygen: xs::double [0..1]

Figure 9. UML diagram of sensor model.

3.4. LandUse Model

LandUse objects describe areas of the earth’s surface dedicated to specific land use. They can be
employed to represent parcels in 3D. Figure 10 shows the UML diagram of land use objects.

Every LandUse object may have the attributes class (e.g., settlement area, industrial area, farmland),
function (e.g., cornfield) and usage which can be used, if the way the object is actually used differs from
the function. Since the attributes usage and function may be used multiple times, storing them in only
one string requires a single while space as unique separator relational database schema. These three
attributes are specified as gml::CodeType. The values of these properties can be enumerated in code lists
(which are painted in green in UML diagram). The LandUse object is defined for all LOD 1-4 and may
have different geometries for each LOD. The surface geometry of a LandUse object is required to have
3D coordinate values. It must be a GML3 MultiSurface.

class LandUse Model /J

«Codelist»
LandUseClassType

Settlement Area
Traffic
Vegetation
Water

«CodeList»
LandUseFunctionType

Cadastre Parcel

Mixed use

Residential

Road

Sports, leisure and recreation
Square

+ o+ o+ o+ o+

«object»

CampusObject

«object»
LandUse

«Codelist»
LandUseFunctionType

Cadastre Parcel

Mixed use

Residential

Road

Sports, leisure and recreation

+ o+ o+ o+ o+ o+

Square

class: LandUseClassType [0..1]

function: LandUseFunctionType [0..¥]
lod1MultiSurface: gml:MultiSurfaceProperty Type [0..1]
lod2MultiSurface: gml:MultiSurface Property Type [0..1]
lod3MultiSurface: gml:MultiSurfaceProperty Type [0..1]
lodAMultiSurface: gml:MultiSurfaceProperty Type [0..1]
usage: LandUseUsageType [0..*]

Figure 10. UML diagram of land use model.

www.manaraa.com

ISPRS Int.]. Geo-Inf. 2020, 9, 63 15 of 30

3.5. CityFurniture Model

City furniture objects are immovable objects like bollards, lanterns, flower buckets, advertising
columns, or delimitation stakes. The UML diagram of the city furniture model is depicted in Figure 11.

The class CityFurniture may have the attributes class, function and usage. The class attribute
allows an object classification like traffic light, traffic sign, delimitation stake, or garbage can, and can
occur only once. The function attribute describes, to which thematic area the city furniture object belongs
to (e.g., transportation, traffic regulation, architecture etc.), and can occur multiple times. The attribute
usage denotes the real purpose of the city object, and can occur multiple times as well. The attributes
class, function, and usage of the object CityFurniture are specified as gml:CodeType. The values of these
properties can be enumerated in code lists. City furniture objects can be represented in city models
with their specific geometry, but in most cases the same kind of object has an identical geometry.
The geometry of CityFurniture objects in LOD 1-4 may be represented by an explicit geometry.

class CityFurniture Model J
«CodeList»
CityFurnitureClassType «object» J—

+ communication CampusObject CityFurnitureUsageType

+ others

+ security + bench

+ traffic + communication fixture
+ emergency call fixture
+ fire detector
+ flagpole

«Codelist» _«Featu_re» + gate
CityFurnitureFunctionType CityFurniture + police call post

+ bench + class: CityFurnitureClassType [0..1] 1 fg:;bs?;

+ m’""‘“"'ca““””;"t‘t“"e + function: CityFurnitureFunctionType [0..¥] P hBishbin

. Ny

N ;:Zeézf:;‘;fa Hihe + lod1Geometry: gml:GeometryPropertyType [0..1] + telephone box

+ flagpole + lod2Geometry: gml:GeometryPropertyType [0..1]

+ gate + lod3Geometry: gml:GeometryPropertyType [0..1]

s PU"EE call post + lodaGeometry: gml:Geometry Property Type [0..1]

+ 0stbox . .

. foad - + usage: CityFurnitureUsageType [0..¥]

+ rubbish bin

+ telephone box

Figure 11. UML diagram of city furniture model.

3.6. Transportation Model

The transportation model is a multi-functional, multi-scale model focusing on thematic and
functional as well as geometrical/topological aspects. The main class is Transportation which
represents, for example, a road, a track, a railway, or a square. In CityGML, transportation is composed
of the parts TrafficArea and AuxiliaryTrafficArea which are some elements in terms of traffic
usage or road, like car driving lanes, pedestrian zones, cycle lanes, kerbstones, middle lanes and
green areas. In our campus model, we ignore both due to no such detail contents in generic campus.
Transportation objects can be thematically differentiated using the subclasses Track, Road, and
Square. The UML diagram of the transportation model is depicted in Figure 12.

Every Transportation object has the attributes class, function, usage, and geometry, referencing
to the external code lists. The attribute class describes the classification of the object. The attribute
function describes the purpose of the object like, for example, bikeway, driveway, footpath, while the
attribute usage can be used if the actual usage differs from the function.

www.manaraa.com

ISPRS Int.]. Geo-Inf. 2020, 9, 63

16 of 30

+ ok o+ o+ o+

class Transportation Model J

«CodelList»
TransportationClassType
civil
common
private
rail traffic
road traffic

«CodeList»
TransportationFunctionType

b F ot ot o+ 4

bikeway/cycle-path
district road
driveway
footpath/footway
lane

main through-road
parking area
pedestrian zone
road

«object»

CampusObject

«CodelList»
TransportationUsageType

«object»
Transportation

+ o+ o+ + o+ + o+

class: TransportationClassType [0..1]

function: TransportationFunctionType [0..*]
lod1MultiSurface: gml:MultiSurfaceProperty Type [0..1]
lod2MultiSurface: gml:MultiSurface Property Type [0..1]
lod3MultiSurface: gml:MultiSurfaceProperty Type [0..1]
lod4MultiSurface: gml:MultiSurfaceProperty Type [0..1]
usage: TransportationUsageType [0..%]

R

bikeway/cycle-path
district road
driveway
footpath/footway
lane

main through-road
parking area
pedestrian zone
road

‘ «object» ‘ «object»

Road Track Square

‘ «object»

3.7. Vegetation Model

Figure 12. UML diagram of transportation model.

Vegetation features are important components of a 3D campus model because they support the
recognition of the surrounding environment. By the analysis and visualization of vegetation objects,

statements on their distribution, structure and diversification can be made. The vegetation model
of CityGML distinguishes between solitary vegetation objects like trees and plant cover like forests.
Meanwhile, in campus model, plant cover objects do not need to be considered and regard solitary
vegetation as vegetation in a class named Vegetation. The UML diagram of the vegetation model is
depicted in Figure 13.

A vegetation object may have the attributes class (e.g., tree, bush, grass), species (species’ name,
e.g., Abiesalba), usage, and function (e.g., botanical monument). The geometry of a Vegetation maybe
defined in LOD 1-4 explicitly by a GML geometry with absolute coordinates, associated with the
gml::_Geometry class representation an arbitrary GML geometry.

VegetationClassType

class Vegetation Model J

«Codelist»

+ ok ko o+ o+

bushes

climber

coniferous tree
ferns

grasses

high plants

low plants

medium high plants
shrub

unknown

VegetationFunctionType

«CodeList»

+ o+ o+ o+ o+ o+ o+ 4+

bushes

climber

coniferous tree
ferns

grasses

high plants

low plants

medium high plants
shrub

unknown

«object»
CampusObject

«object»
Vegetation

ottt F o+ o+ o+ o+ o+

class: VegetationClassType [0..1]
crownDiameter: gml:LengthType [0..1]

function: VegetationFunctionType [0..¥]

height: gml:LengthType [0..1]

lod1Geometry: gml:GeometryPropertyType [0..1]
lod2Geometry: gml:GeometryPropertyType [0..1]
lod3Geometry: gml:GeometryPropertyType [0..1]
loddGeometry: gml:GeometryPropertyType [0..1]
species: VegetationSpeciesType [0..1]
trunkDiameter: gml:LengthType [0..1]

usage: VegetationUsageType [0..%]

«Codelist»

VegetationUsageType

bushes
climber
coniferous tree
ferns

grasses

high plants
low plants

shrub
unknown

+ ok ko o+ o+ o+

«CodeList»

medium high plants

VegetationSpeciesType

Abies alba

Abies concolor
Abies grandis

Abies koreana
Abies lasiocarpa

o+ o+ o+ o+ o+ 4+

Abies cephalonica

Abies homolepsis

Figure 13. UML diagram of vegetation model.

www.manaraa.com

ISPRS Int.]. Geo-Inf. 2020, 9, 63 17 of 30

3.8. Terrain Model

An essential part of a campus model is the terrain. CityGML includes a very adaptable digital
terrain model (DTM) which permits the combination of heterogeneous DTM types (grid, TIN, break
lines, mass points) available in different levels of detail. We redefine class Terrain to represent a DTM
fitting our campus model. This is a Campus0bject with LOD step that fits the DTM as an attribute.
The UML diagram of the terrain model is depicted in Figure 14.

Individual geometrical types of the Terrain objects are defined by the four subclasses: breaklines,
triangular networks (TINs), mass points, and grids (raster). Geometrically, the corresponding ISO
19107 or GML classes define these types: breaklines by a single MultiCurve, TINs by TriangulatedSurfaces,
mass points by MultiPoint, and raster by RectifiedGridCoverage.

class Terrain Model)
«object»
CampusObject
«object»
Terrain
+ extent: gml:PolygonProperty Type [0..1]
+ lod: core:integerBetweenOand4
«object» «object»
TIN Breakline
‘ + tin: gml:TriangulatedSurface | + breaklines: gml:MultiCurve
+ ridgeOrValleyLines: gml:MultiCurve
«object» «object»
MassPoint Raster
‘+ reliefPoints: gml:MultiPoint | |+ grid: gml:RectifiedGridCoverage ‘

Figure 14. UML diagram of terrain model.
4. Database Solutions for PIM

As aforementioned in Section 2, spatial DBMS have been developed in response to
new requirements for geo-information applications in recent years. Among them, employing
spatial-extended relational database management systems (spatial-RDBMS) to store and manage
complex building models will bring lots of benefits. On one hand, spatial-RDBMS support all kinds of
spatial data types, spatial access methods and spatial query languages, as well as providing means for
high-efficient spatial indexing structure and geometric and topological analyses. On the other hand,
spatial DBMS play an important role in bridging the geometric modeling of manmade and natural
geo-objects. Therefore, it is useful to provide geometric primitives such as points, line segments,
triangles, and tetrahedrons for both manmade and natural objects to construct more complex objects
consisting of surfaces and solids [7]. Therefore, spatial DBMS such as commercial software ORACLE
Spatial/Locator and the open-source software PostgreSQL with PostGIS extension play a major role
for 2D /3D geoscientific models [32] due to their extensive capabilities in handling 3D spatial data.

The conceptual solution for handling object-oriented data models like CityGML and IFC in
spatial-RDBMS can be abstracted to solving the problem of mapping the object-oriented data model
onto a relational data model. Following mapping rules are adopted in our relational database
design procedure:

www.manaraa.com

ISPRS Int.]. Geo-Inf. 2020, 9, 63 18 of 30

e A class shall be mapped into one single table. The mapped table shall have at least one primary
key column to store the object identifier which may be known as “ID” and must be unique within
the table. Additional columns can also be added to the mapped table for storing the spatial and
non-spatial attribute values of the respective class objects.

o A foreign key constraint needs to be added in case of 1:1 or 1:N relationship. For each binary
1:1 or 1:N relationship type, we choose one of the relations and include as a foreign key in the
chosen relation the primary key of another relation. It is better to identify the relation S that
represents the participating at the N-side of the relationship type.

e An associative table in case of M:N relationship shall be used to link the tables mapped from
the associated classes. For each binary N:M relationship type, create a new relation to represent
this relationship. Include as foreign key attributes in the chosen relation the primary keys of the
relations that represent the participating relations; their combination will form the primary key of
the chosen one.

e A foreign key constraint or an associative table needs to be set for inheritance relationship.
The inheritance relationship between two classes can either be implemented using a foreign key
constraint to link the subclass and superclass tables by joining their primary keys or mapped to
a table that represents the two inherited classes at the same time.

However, although these mapping rules allow mapping building model onto a relation database
model, they may easily lead to a large number of database tables due to plenty of building objects
(e.g., door, windows, slab, plate, wall and so on) in CityGML and IFC building models. In the
meanwhile, different objects may have a completely different attribute list and vast attributes may
have numbers of null values. Furthermore, this may result in lots of join relations when queries are
requested. An analysis of the existing relational database systems indicated that a more compact
database schema is much more efficient for querying and processing of large and complex-structured
data to facilitate good performance when interacting with the database in a real-time application [33].
To reach this purpose, our database schema shall result from a careful manual process by identifying
and simplifying the complex classes and data type and mapping them onto fewer tables with respect
to the database interoperability. Concerning this requirement, the types of attributes are customized to
corresponding database (PostgreSQL) data types (see Table 2).

Table 2. Data type mapping.

UML PostgreSQL/PostGIS
String, anyURI VARCHAR/TEXT
Int INT/NUMERIC
Double FLOAT/REAL/NUMERIC
Boolean BOOLEAN
Date DATE/TIMESTAMP
Pcpatch PCPATCH
GML Geometry GEOMETRY

Furthermore, we propose a set of fine-grained mapping rules:

e Mapping classes in inheritance relationship or same hierarchy level into one table. We assume
that in most cases, subclasses may have or set the same attribute list due to data missing or multiple
unique attributes make no contribution to special applications. With this consideration, some
classes belonging to an inheritance hierarchy can be mapped into one single table, which results
in the retrieval of data in all subclasses just need to perform queries on one table in order to avoid
multiple tables joins for speeding up the overall performance. This way, the single table allows
for rapid retrieving a list of different objects through a query on the category attribute which
distinguishes instances objects stored in the table from different types. For detail, we can add an

www.manaraa.com

ISPRS Int.]. Geo-Inf. 2020, 9, 63 19 of 30

additional column named “OBJECTCLASS_ID” or “OBJECTCLASS_INAME” which can store a
numeric value or string value in each row for representing the respective class type.

e Mapping aggregations and compositions into one table. Due to our building is
objected-oriented, aggregation and composition relations of classes can be properly modeled by
using a foreign key for joining each class with its parent class. For special case that recursion
appears in aggregation or composition relationships, a single table for mapping of all the involved
classes along with their inheritance relationship can be added in the database. For detail, we can
add an additional column “PARENT_ID” as the foreign key which is used for representing the
composition relationship.

5. Case Study

As a case study area, the UNSW campus is selected. Among all available data, we have
concentrated on three types: GIS (e.g., 2D or 3D spatial data), BIM and sensors information. We do
not have any complex shapes from IFC for the implementation since all IFC we have are B-reps. Most
of the GIS data is mainly in 2D we reconstruct 3D objects from it. Rhinoceros (with Grasshopper) is
used to process the entire reconstruction [34]. We import BIM (obtained as IFC files) models using the
IFC++ library [35] and process the geometric, topological and semantic information using CGAL [36].
As the main source for data pre-processing, a terrain generated from point clouds is used. Thus, data
representing BIM models, 2D floorplans, roads, green areas and trees are draped to the terrain.

The integrated 3D model is stored in an object-oriented database—PostgreSQL /PostGIS in our
project, which can be remotely accessed via host address, port, and password. Data in our database
can also be accessed via web requests, which allows external application developers to create either
web-based or standalone applications that interact with relevant data entities in our model for particular
purposes. Stakeholders are allowed to query and update their objectives against the existing precinct
entities in our model.

Furthermore, QGIS software can be used for visualizing entities. It can open a model across the
Internet connection to the database server, edit that model and save the amended model either to a
model file on the local system or merge it back into the source model on the server. We have shown
database access and query use cases in our conference paper [37] via customized datasets. Therefore,
SQL-based queries experiments can be found in [37].

5.1. Conceptual Design

According to the general conceptual design for integrated 3D city model at campus-scale in
Section 3.1, we develop our specific 3D model for UNSW campus based on the objects we have. In
Figure 15, the subclasses of _CampusObject comprise the different thematic classes related to the built
environment in UNSW campus, in the following covered by separate data models: building model
(_Building), sensor model (_Sensor), transportation model (Road), vegetation model (_Vegetation),
terrain model (Terrain) and external model (named _EzternalReference).

In detail, the external model receives information from UNSW ARCHIBUS Facilities Management
System (https:/ /archibus.unsw.edu.au/), which includes current attributes for floors and rooms with
the intention to identify individual working spaces/desks, which plays as statistic data corresponding
to each room in the building. Sensor model contains two different data sources which donated by
classes Energy and Air Quality shown in the UML diagram as a subclass of _Sensor. Among them,
Energy is a class which contains consumption of gas and electricity of each building in the UNSW
campus, while air quality data of each room coming from MyAir system (https://citydata.be.unsw.
edu.au/layers/geonode%3Amyair). The time interval is 15 s for both sensors. For transportation
model, only road subclass exists in UNSW campus. Therefore, we omit superclass Transportation
defined in Section 3.6, and replace it with unique class Road. Regarding vegetation model, we define
one abstract class _Vegetation and two specific classes Lawn and Tree instead of representing specific
objects in CodeList style as shown in Section 3.7. In terms of the terrain model, we process terrain

www.manaraa.com

https://archibus.unsw.edu.au/
https://citydata.be.unsw.edu.au/layers/geonode%3Amyair
https://citydata.be.unsw.edu.au/layers/geonode%3Amyair

ISPRS Int.]. Geo-Inf. 2020, 9, 63 20 of 30

objects in triangular networks (TINs) geometry. Thus, a concrete class Terrain which carries TINs
geometry and its three vertices are created in our conceptual design.

The integrated building model is the most complex one consisting of both GIS and BIM data.
Following the mapping rules defined in Section 3.2, we create one abstract class _Bu%lding donating
building or building part from LOD1 CityGML data. _Building may have some attributes like
name, max_height, landuse and so on. The building only has gml:LOD1MultiSurface geometry. To
build connection between building object and energy sensor data, we add association between
them via building name. The _Storey is an aggregation of building elements and spaces, and
Space is a concrete class with attributes from IFC model. Due to no LOD2 to LOD4 boundary
surface information in our CityGML model, here we simply regard space as room in the following
experiments. Here, we add a link between Space and Air Quality through room name. IFC model
also provides IfcFurnishingElement which is used as a generalization of all furniture related objects,
we create class BuildingFurniture and pour data in IfcFurnishingElement into it. For building
elements, it contains three subclasses: Wall (from IfcWall), _Covering (from IfcCovering and IfcRoof),
and _BuildingInstallation. Among them, as an abstract class, _BuildingInstallation includes
remaining IFC building element objects. Moreover, opening elements (IfcOpeningElement) are attached
to building elements. Inside each opening element, there may contain multiple IfcDoor and IfcWindow
elements with referencing their geometry from IFC model. Therefore, we create abstract class _Opening
with two compositions Door and Window in our design.

www.manaraa.com

ISPRS Int.]. Geo-Inf. 2020, 9, 63

dlass Case Study

CampusObject

+ ID:int

_Building

+ o+ kot o+

amenity: string
geometry: Surface

landuse: string
leisure: string
max_height: double
name: string

color: string.
containing_storey: string
description: string
geometry: Surface

guid: string.

1 +building

_Sensor

CO2: int

myair_num: int
room: string
timestamp: timestamp

Energy

aspect: string
geometry: Surface
percentage_slope: string

slope: string
vertex1:int
vertex2: int
vertex3: int

Tree

Room Property

Lawn
+ geometry: Surface
| + name: string

division_faculty_name: string
floor: string

room: string

room_area: double
room_capacity: int
room_comments: string

+name room_function_description: string

R +name + building: string
name: string + electricity_demand: double
wname| T 83S_flow_rate: double
B e e L o5t
+room
_BuildingElement 0" Space
+room
+ color: string + color: string
+ containing_storey: string + containing_storey: string
+ description: string = e s
+ geometry: Surface + geometry: Surface
+ guid: string + guid: string &
+ name:string + name: string e color: string.
- + containing_storey: string
+ description: string
‘ ‘ + geometry: Surface
+ guid: string
_Covering _Buildinginstallation (TSI
Roof ‘ ‘ ‘ ‘
’ Stair] ’ Plate l ’ Slab ‘ ’ Member
Column ’ Ramp ‘ ’ Railing ‘

room_type_description: string
unit_name: string

o+ kot o+t o+

Legend
[Abstract Class
(D cityGML class
IFC Class
Sensor Class
External Class

+
+
+

geometry: Point]|

layer: string
species: string

Figure 15. UML diagram for integrated UNSW campus model.

www.manaraa.com

21 of 30

ISPRS Int.]. Geo-Inf. 2020, 9, 63 22 of 30

5.2. Relational Database Design

Employing spatial-RDBMS is the state-of-the-art solution to store and manage complex 3D
building model, such as the open-source software PostgreSQL with PostGIS (https://postgis.net/)
extension has extensive capabilities in handling 3D spatial data and supports all required geometry
types and provide means for proper spatial indexing as well as for geometric and topological
analysis. For example, volumes from the IFC models or the reconstructed from the 2D data can
be represented as a POLYHEDRALSURFACE object. Each data type contains a spatial reference
identifier (SRID) to describe the coordinate system as well. Using POLYHEDRALSURFACE over
other possibilities (e.g., MULTIPOLYGON Z) allows using more PostGIS geometric functions with the
SFCGAL extension (http:/ /www.sfcgal.org/).

The UNSW campus model, described in Section 5.1 at the conceptual level, is realized by the
tables shown in Figure 16. The pure CityGML class Terrain and its attributes specified in the UML
(cf. Figure 15) diagram are directly mapped the TERRAIN table and its corresponding columns.
In the same way, we realize class Road by the table ROAD. For the realization of vegetation objects,
two separate tables are provided: LAWN and TREE. Due to different attribute list in two kinds of
vegetation objects, we can ignore the abstract class _Vegetation in our realization. Same as vegetation,
only one external reference object exists in our UML diagram, we just need to realize class Room
Property into table ROOMPROPERTY with its attribute columns. In the same way, we map class Air
Quality and Energy into table AIRQUALITY and ENERGY, respectively.

Building is the most complicated one. The class _Building is directly mapped the BUILDING
table and its corresponding columns. The relation to the table ENERGY is established by the
primary key name. The class Space and BuildingFurniture can be realized by table SPACE and
BUILDINGFURNITURE directly, and all attribute specified in the UML diagram are reserved in their
corresponding columns. Moreover, the relation to the table AIRQUALITY has arisen from the key
name. The UML classes _0Opening, Door and Window are realized by the single table OPENING. Door
and window objects are distinguished by the attribute Fill_type (‘"door’ or ‘window”). For the realization
of building element objects, we can map all into one table BUILDINGELEMENT due to they have
the same attribute list in our dataset. We distinguish different objects in _BuildingElement by the
attribute type. We can also create three tables WALL, COVERING and BUIDLINGINSTALLATION
to the different building element categories. In the following experimental part, we adopt the one
BUILDINGELEMENT strategy to reduce the number of tables in our database.

www.manaraa.com

https://postgis.net/
http://www.sfcgal.org/

ISPRS Int.]. Geo-Inf. 2020, 9, 63 23 of 30

class Case Study Manul DDL /)
Buildingfurniture =] R =)
RoomProperty B
«column» - P —
Color: varchar(200) «column» = =] Lawn B . =]
Containing_storey: varchar(200) Division_faculty_name: varchar(200)
Description: varchar(500) Floor: varchar(200) . «column» P i
Geometry: geometry. +PK_Roomproperty| Room:varchar(200) - - ‘Geometry: geometry. e —
Guid: varchar(200) Room_area: double precision Electricity,_ demand: double preci iame: varchar(200) Layer: varchar(200)
Name: varchar(200) Room_capacity: integer N toubie precision :integer
*PK BuildingfurniturelD: integer Room_comments: varchar(200) B meatamp
FK SpacelD: integer Room_function_description: varchar(200) O teger Pk
(name =Roompropertyip) ROOM_type_description:varchar(500) + PK_Lawn(integer) p
@0 o . Unit name: varchar(zo0) e e —
+ PK_Buildingfurniture(integer) PK RoomPropertylD: integer + PK_Energy(integer)
«Fkn
Pk +PK_Ener
+ _Energy
(& FK Buildingfurniture_Space(integer)| +FK_Space_room + PK_RoomProperty(integer)
+FK_Buildingfurniture_Space | *
Space. B
P — N 5] Terrain =]
«column» AirQuality =2
Color: varchar(200) (name =EnergyiD) «column» «column»
Containing_storey: varchar(200) |+FK_Space_room (name = +PK_AIrQuality| ccotumn» rnerey! e omety, Aspect: varchar(200)
Description: varchar(500) s Co2: integer «Fk» “PK RoadiD: integer Geometry: geometry
ety el Percentage_slope: varchar(200)
(spacelp *PK.S Guid: varchar(200) Room: varchar(200) @ Slope: varchar(200)
«FKe 0.1 |[EERERCHYRItar(200) +FK_Space_Storey * Timestamp: timestamp + PK_Road(integer)
1| *pK SpacelD: integer - “PK AirQualitylD: integer —
FK name: integer 0.
FK StoreylD: integer «Pk» +#K_Building_building “PK TerrainiD: integer
+ PK_AirQuality(integer)
Pk - = Building B «PK»
+ PK_Spacefinteger) (storeyID = toreyip) + PK Terrain(integer)
o ' «column»
ko
B e room(intezer) ‘Amenity: varchar(200)
+ FK_Space_Storeyinteger) ‘Geometry: geometry.
_— Landuse: varchar(200)
+PK_Space Leisure: varchar(200)
+PK_Storey\[/1 Max_height: double precision
Storey B
«column» +FK_storey Building (guildingio - Buildingio) +PK_Building
! “PK StoreylD: integer PK»
(SpacelD =SpacelD) “FK BuildingID: integer 1s «FK» 1|+ Pk Building(integer)
ko K>
«PK» + FK_Building_building(integer
4 PK_storey(integer) K Building_building(integer)
«FKn
+ FK_Storey_Building(integer)| P eement =]
+PK_Store, +
+FK_BuildingElementSpace_Space |* S toreyip =storeyin) oK «column»
Color: varchar(200)
BuildingElementSpace =] K> Containing_storey: varchar(200)
Description: varchar(500)
«column» +PK. Geometry: geometry.
FK SpacelD: integer : (200)
. <Ko T
FK BuildingelementID: integer Name: varchar(200)
Type: varchar(50)
K> +FK_BuildingElementSpace_BuildingElement +PKE Pk integer
+ K X)
+ K ¥)|+ «FKn Pk
(BuildingelementiD = Buildingelementio) B g elementiinteger)
ko -
+FK_BuildingElementStorey_Storey|*
BuildingElementstorey B +FK_Opening_Buildingelement 0..*
«column» +FK_BuildingElementStorey_BuildingElement Snening’ =
FK StoreyID: integer
FK_BuildingelementiD: integer 1. «column»
Color: varchar(200)
o Containing_storey: varchar(200)
+ FK_BuildingElementStorey_Storey(integer) varchar(500)
+ K x archar(50)
eography
Guid: varchar(200)
Name: varchar(200)
“PK OpeningID: integer
FK BuildingelementID: integer
Pk
+ PK_Opening(integer)
«FKn
+ FK_Opening Buildingelement(integer)

Figure 16. Logical data model for our relational database design.

www.manaraa.com

ISPRS Int.]. Geo-Inf. 2020, 9, 63 24 of 30

Figure 17 illustrates the table BUILDING in the database. Along with the geometry, it includes the
unique building IDs which can also be used for connecting Storey objects, the semantic information
(e.g., leisure, land use, amenity) which is optional, the name which works as a foreign key to link
Energy class.

id buillding_id building_name max_height amenity leisure landuse geom n

4 [PK]integer integer character varying (200) rea character varying (200) character varying (200) character varying (200) geometry
1 1 24 Science Theatre-F13 409331 01070000A0C46.
2 2 87 Barker Street Apartments - .. 41.0631 [nuil] u 1 01070000A0C46.
3 3 82 New College-L6 442097 [null] u 1 01070000A0C46.
4 4 77 Chemical Sciences - F10 57.891 | [null] u] 01070000ADC46.
5 5 118 | Michael Birt Gardens 67.6576 park 01070000ADC46
[6 55 Red Center-H13 50.3869 | [null] u] 01070000A0C46.
7 7 65 UNSW Village 45.955 | [null] u 1 01070000A0C46.
8 8 23 UNSW Hall Courtyard 423303 1 outdoor_seating 01070000A0C46..
9 9 99 lo Myers Studio - D9 352382 |] 01070000ADC46

=]
w

Quadrangle - E15 507621 |] 01070000A0C46
1 n 62 UNSW Village 36.4615 [null] u] 01070000A0C46.
12 12 115 | Roundhouse - E6 36.3498 pub u] 01070000A0C46.

Figure 17. Example of a table stored in PostgreSQL to store building objects.

Furthermore, GIS data describing a complete building often uses multiple geometries each depicts
a component of a building. Therefore, we can also upward a relation BUILDING to store building
ID and NAME and use BUILDINGPART to store semantic information of a building, respectively.
A foreign key column building_id can be added in BUILDINGPART for representing the composition
relationship as proposed mapping rule in Section 4. In the same way, to speed up the queries, we can
assign building ID as a foreign key reference of Space and BuildingElement so that relation Storey
can be omitted due to it works as bridge relation in current database design. Figure 16 illustrates the
logical data model for our relational database design.

6. Discussion and Conclusions

In this paper, a relational 3D spatial-database solution for the management and analysis of PIM
with multi-source data fusion was presented. We proposed a general conceptual and logical data
model of building domain. To improve the performance of our integrated building model (IBM),
we fused multi-source built-environment data to enhance semantic power and developed efficient
mapping rules to simplify relational database design. The case study shows that our integrated
building model can achieve a better understanding of the built environment and it will be a promising
approach for future city or urban scale modeling work. Limitations of our approach are, (1) CityGML
and IFC are not fully demonstrated and IBM should be made minor modifications for different real
applications/scenarios; (2) the conversion or mapping among CityGML, IFC and IBM is a start point
towards the integration of CityGML and IFC in concept. The identified limitations are also our future
research directions. Except database access and query use cases in our conference paper [37] via
customized datasets, in the future, we will deal with suitable multiple data sources with multiple level
of details, and then create PIM under the specific application. Moreover, concerning how to analyse
quality management and validity checking under multiple application scenarios is also interesting in
our follow-up work.

There are several possible directions that can be explored for future works. First, how to
enrich urban environment models for specific purposes or applications is interesting and promising.
Second, integrating existing models (e.g., IFC model and CityGML model) is still a challenging work.
For instance, two alternatives to implementation for integration can be discussed [38]. In the first
alternative, the common geometric representations of all objects are identified and stored in separate
tables. The thematic semantic tables would be linked to the geometric tables. In the second alternative
the thematic semantic tables would integrate the geometries. Design and comparison of different
integration implementations will be the next stage of our work.

www.manaraa.com

ISPRS Int.]. Geo-Inf. 2020, 9, 63 25 of 30

In the current implementation we have used only the currently available datatypes of spatial
DBMS. However, converting CSG, sweep and parametric geometries provided in IBM models results
in unnecessary complex and large BRep. Two alternative directions for more compact storage can
be investigated. One option will be organising such geometries as BLOB in the database. The
second option is to introduce user-defined data types, which can maintain mathematically defined
geometry [39].

Author Contributions: Conceptualization, W.L.; Data curation, W.L., A.A.D., M.A. and].Y.; Formal analysis,
W.L.; Funding acquisition, S.Z.; Investigation, W.L. and S.Z.; Methodology, W.L.; Software, W.L.; Supervision,
S.Z.; Visualization, W.L.; Writing—original draft, W.L.; Writing—review & editing, S.Z., A.A.D., M.A. and].Y. All
authors have read and agreed to the published version of the manuscript.

Funding: Case study is supported by CRC for Low Carbon Living Ltd supported by the Cooperative Research
Centers program (No. RP2011ul).

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations
The following abbreviations are used in this manuscript:
BIM Building Information Modeling

CAD Computer Aided Design
DBMS Database Management System

GIS Geographic Information System
GML Graphics Mark-up Language

IFC Industry Foundation Classes

ISO International Standards Organization

OGC Open Geospatial Consortium
PIM Precinct Information Modeling
SQL Structured Query Language

Appendix A. IFC Building Model

From IFC4 standards we identify important concepts for building model (Figure AT).

www.manaraa.com

ISPRS Int.]. Geo-Inf. 2020, 9, 63

dass IFC_/

«object»
IfcProject

«object»
IfcSite

«object»
IfcBeam

«object»
IfcRoof

«object»
IfcColumn

IfcObject
«object»

IfcWindow

«Geometry»

o.*
«object»
IfcBuilding

Q1

«object»

IfcSpatialStructureElement

«object»
IfcShapeRepresentation IfcCovering X
«object»

IfcStair

«object»
IfeProduct

0..*

0.

«object»
IfcBuildingStorey

o

0.*
«object»
IfcSpace

«object»

ifcElement

«ohject»
IfcDoor
«object»

Ifeh 1

«ohject»

IfcPlate

it
W

«object»
IfcStairFlight

2 «Geometry»
IfcLocalPlacement

«object»
IfcSlab

«object»

«object» «object» «object» «object» «object» IfcBuildingElementProxy
IfcElementComponent IfcDistributionElement IfcFurnishingElement IfcFeatureEl IfcBuildingEl «object»
IfcRailing
«object»
? [ﬁ IfcWall

«object» «object»

«object» «object»
IfcDiscreteAccessory IfcBuildingElementPart

«object»

IfcDistributionFlowElement

IfcFeatureElementSubtraction IfcRamp

«ohject»

i ¥

IfcWallStandardCase

«object»
IfcRampFlight

«object»

ifcOpeningElement

«object»

IfcFlowTerminal

ifcFlowSegment

«object»

Figure A1. IFC building model.

www.manaraa.com

26 of 30

ISPRS Int.]. Geo-Inf. 2020, 9, 63 27 of 30

Appendix B. CityGML Building Model
From CityGML2.0 standards we identify important concepts for building model (Figure A2).

www.manharaa.com

ISPRS Int.]. Geo-Inf. 2020, 9, 63 28 of 30

«Feature» «Codelist» «CodeList»
_Object ! lassTy gt !
+ administration + cabinet
+ business, trade + cupboard
«Feature» + ca + locker
BuildingInstallation = [+ shelf
+ recreati + sideboard
+ boundedBy: BoundarySurfacePropertyType [0..¥] + sanitation + tool cabinet
+ class: BuildingInstallationClassType [0..1] v SEE o G
+ function: BuildinglnstallationFunctionType [0..*]
+ lod2Geometry: gml:GeometryProperty Type [0..1]
+ lod3Geometry: gml:GeometryProperty Type [0..1] R Codelists R Codelisty
+ lod4Geometry: gml:GeometryPropertyType [0..1] «Feature» «Feature»
+ usage: BuildingInstallationUsageType [0..¥
g & geType [0-] Building BuildingPart +inner characteristics + arcade
- + maintenance + balcony
+ outer characteristics + chimney (part of a building)
«Feature» + waste management + column
IntBuildingInstallation + stairs
+ tower (part of a building)
+ boundedBy: BoundarySurfacePropertyType [0..¥] + winter garden
+ class: IntBuildinglnstallationClassType [0..1] -
+ function: IntBuildinglnstallationFunctionType [0..*] «Feature»
+ lod4Geometry: gml:GeometryPropertyType [0.1] & <] AbstractBuilding e SCooetens
+ usage: IntBuildingInstallationUsageType [0..*] =
o + address: core:AddressPropertyType [0..%] + administration +
. + boundedBy: BoundarySurfacePropertyType [0..¥] M b“ls'::‘ss'"“d‘ B
N ";rea:“’e; + class: AbstractBuildingClassType [0..1] T M
ulldingFurniture + consistsOfBuildingPart: BuildingPartPropertyType [0..*] . . al building
+ class: BuildingFurnitureClassType [0..1] + function: AbstractBuildingFunctionType [0..¥] + tenement
+ function: BuildingFurnitureFunctionType [0..¥] + interiorBuildi i ildi ionPropertyType [0..*]
+ lodaGeometry: gml:GeometryPropertyType [0..1] + interiorRoom: InteriorRoomPropertyType [0..*] CodeListn _
+ usage: BuildingFurnitureUsageType [0..*] + lod1MultiSurface: gml:MultiSurfacePropertyType [0..1] IntBuildinglnstallationClassType i
+ IodlSoIldfgml:SoIldPropel.'tyType [0.1] P e e tion =
" + lod2MultiCurve: gml:MultiCurvePropertyType [0..1] + Entertainmant o
+ lod2MultiSurface: gml:MultiSurfacePropertyType [0..1] + Heating, Ventilation, Climate M l'a’fns‘:e
A + lod2Solid: gml:SolidPropertyType [0..1] D B izt switch
+ lod3MultiCurve: gmI:MultiCurvePropertyType [0..1] o e + Oven
< «Feature» + lod3MultiSurface: gml:MultiSurfacePropertyType [0..1] + Statics M ﬁ:‘f’['::"’
- Room + lod3Solid: gml:SolidPropertyType [0..1] +_Supply and Disposal
+ boundedBy: BoundarySurfacePropertyType [0..%] 6‘—O+ Iod4MuIt!Curve mI:MuIth.urvePropertyType[0..1]
. <[+ lod4MultiSurface: gml:MultiSurfacePropertyType [0..1]
+ class: RoomClassType [0..1] + loddsolid: gml-solidPropertyType [0.1] «Codelist» «CodeList» «CodeList»
+ function: RoomFunctionType [0..*] df I"\t ILp r:‘I{‘TVP [0"1] RoomClassTh i -
L — . N + measuredHeight: gml:Len e [0..
+ interiorFurniture: InteriorFurniturePropertyType [0..*] N dHeight: gmi:LengthTyp . Type [0.%] o e ration. + bath, washroom I raom
+ lod4Multisurface: gml:MultiSurfacePropertyType [0..1] st Hat o ropertytype (0. + business, trade + bedroom + kitchen
+ lod4solid: gml:SolidPropertyType [0..1] + usage: AbstractBuildingUsageType [0..*] + catering + hal + living room
- N : . + habitation + home office + showers
+ pertyType [0..*] N n N :
! 2 + recreation + kitchen + tribune
+ usage: RoomUsageType [0..*] e — B tiroom
+ stairs
- . + toilet
«Feature» «Feature»
— _Opening _BoundarySurface «CodeList»
+ lod3MultiSurface: gml:MultiSurfacePropertyType [0..4]|* 0.2|+ lod2MultiSurface: gml:MuttiSurfacePropertyType [0..1] e
+ lod4MultiSurface: gmi:MultiSurfacePropertyType [0.1] e cehiopetvTvpel0:1] + cupboard 7
+ lod4MultiSurface: gml:MultiSurfacePropertyType [0..1] + sink, hand-basin b o:h‘f“:
+ opening: OpeningPropertyType [0..*] = + tower
+ water tap "
+ winter garden
«Feature» ‘ «Feature» I T T |
Door Window «Feature» «Codelist» «CodeList»
+ address: core:AddressPropertyType [0__*]‘ RoofSurface WallSurface FloorSurface OuterCe face
+ barn + Fireside
+ hostel + Light switch
«Feature» «Feature» + residential building +
CeilingSurface OuterFloorSurface + rubbish bunker + Power point
+ tenement + Radiator

Figure A2. CityGML building model.

www.manaraa.com

ISPRS Int.]. Geo-Inf. 2020, 9, 63 29 of 30

References

1. Biljecki, E; Stoter, J.; Ledoux, H.; Zlatanova, S.; Coltekin, A. Applications of 3D city models: State of the art
review. ISPRS Int.]. Geo-Inf. 2015, 4, 2842-2889. [CrossRef]

2. Murata, M. 3D-GIS application for urban planning based on 3D city model. In Proceedings of the 24th
Annual ESRI International User Conference, San Diego, CA, USA, 9-13 August 2004.

3. Shiode, N. 3D urban models: Recent developments in the digital modelling of urban environments in
three-dimensions. GeoJournal 2000, 52, 263-269. [CrossRef]

4. Fadli, F; Kutty, N.; Wang, Z.; Zlatanova, S.; Mahdjoubi, L.; Boguslawski, P.; Zverovich, V. Extending
indoor open street mapping environments to navigable 3D CityGML building models: Emergency response
assessment. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2018, 42, 161-168. [CrossRef]

5. Walenciak, G.; Stollberg, B.; Neubauer, S.; Zipf, A. Extending spatial data infrastructures 3D by geoprocessing
functionality-3D simulations in disaster management and environmental research. In Proceedings of the 2009
International Conference on Advanced Geographic Information Systems & Web Services, Cancun, Mexico,
1-7 February 2009; pp. 40-44.

6. Kriger, A.; Kolbe, T. Building analysis for urban energy planning using key indicators on virtual 3D city
models—The energy atlas of Berlin. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2012, 39, 145-150.
[CrossRef]

7. Breunig, M.; Zlatanova, S. 3D geo-database research: Retrospective and future directions. Comput. Geosci.
2011, 37, 791-803. [CrossRef]

8. Lo, CP; Yeung, AK. Concepts and Techniques of Geographic Information Systems; Prentice Hall:
Upper Saddle River, NJ, USA, 2002.

9. Azhar, S.; Khalfan, M.; Magsood, T. Building information modelling (BIM): now and beyond. Construct. Econ.
Build. 2012, 12, 15-28. [CrossRef]

10. Newton, P; Plume, J.; Marchant, D.; Mitchell, J.; Ngo, T. Precinct information modelling: a new digital
platform for integrated design, assessment and management of the built environment. In Integrating
Information in Built Environments; Routledge: London, UK, 2017; pp. 111-132.

11. Cai, G. Contextualization of geospatial database semantics for human-GIS interaction. Geoinformatica 2007,
11, 217-237. [CrossRef]

12. Groger, G.; Kolbe, T.; Nagel, C.; Héfele, K. OGC City Geography Markup Language (CityGML) Encoding
Standard; Open Geospatial Consortium: Wayland, MA, USA, 2012.

13. ISO. Industry Foundation Classes (IFC) for Data Sharing in The Construction and Facility Management Industries;
International Organization for Standardization: Geneva, Switzerland, 2013.

14. Giiting, RH. An introduction to spatial database systems. VLDB]. Int.]. Very Large Data Bases 1994,
3, 357-399. [CrossRef]

15. Tolmer, C.E.; Castaing, C.; Diab, Y, Morand, D. CityGML and IFC: Going further than LOD.
In Proceedings of the 2013 Digital Heritage International Congress (DigitalHeritage), Marseille, France,
28 October—1 November 2013; Volume 1, pp. 645-648.

16. Deng, Y.; Cheng, J.C.; Anumba, C. Mapping between BIM and 3D GIS in different levels of detail using
schema mediation and instance comparison. Autom. Construct. 2016, 67, 1-21. [CrossRef]

17. Liu, X.; Wang, X.; Wright, G.; Cheng, J.; Li, X; Liu, R. A state-of-the-art review on the integration of Building
Information Modeling (BIM) and Geographic Information System (GIS). ISPRS Int.]. Geo-Inf. 2017, 6, 53.
[CrossRef]

18. Ghamisi, P; Rasti, B.; Yokoya, N.; Wang, Q.; Hofle, B.; Bruzzone, L.; Bovolo, E; Chi, M.; Anders, K.;
Gloaguen, R.; et al. Multisource and Multitemporal Data Fusion in Remote Sensing. arXiv 2018,
arXiv:1812.08287.

19. Zhu, Q.; Hu, M;; Zhang, Y.; Du, Z. Research and practice in three-dimensional city modeling. Geo-Spat. Inf.
Sci. 2009, 12, 18-24. [CrossRef]

20. Billen, R,; Cutting-Decelle, A.F.; Marina, O.; De Almeida,].P; Caglioni, M.; Falquet, G.; Leduc, T.; Metral, C.;
Moreau, G.; Perret, J.; et al. 3D City Models and Urban Information: Current Issues and Perspectives-European
COST Action TU0801; edp Sciences: Les Ulis, France, 2014.

21. Nakashima, H.; Aghajan, H.; Augusto,].C. Handbook of Ambient Intelligence and Smart Environments; Springer
Science & Business Media: Cham, Switzerland, 2009.

www.manaraa.com

http://dx.doi.org/10.3390/ijgi4042842
http://dx.doi.org/10.1023/A:1014276309416
http://dx.doi.org/10.5194/isprs-archives-XLII-4-161-2018
http://dx.doi.org/10.5194/isprsarchives-XXXIX-B2-145-2012
http://dx.doi.org/10.1016/j.cageo.2010.04.016
http://dx.doi.org/10.5130/AJCEB.v12i4.3032
http://dx.doi.org/10.1007/s10707-006-0001-0
http://dx.doi.org/10.1007/BF01231602
http://dx.doi.org/10.1016/j.autcon.2016.03.006
http://dx.doi.org/10.3390/ijgi6020053
http://dx.doi.org/10.1007/s11806-009-0195-z

ISPRS Int.]. Geo-Inf. 2020, 9, 63 30 of 30

22. Zhang,].; Seet, B.C.; Lie, T. Building information modelling for smart built environments. Buildings 2015,
5,100-115. [CrossRef]

23. Bleiholder, J.; Naumann, F. Data fusion. ACM Comput. Surv. (CSUR) 2009, 41, 1. [CrossRef]

24. Dong, J.; Zhuang, D.; Huang, Y.; Fu,]. Advances in multi-sensor data fusion: Algorithms and applications.
Sensors 2009, 9, 7771-7784. [CrossRef]

25. Rigaux, P; Scholl, M.; Voisard, A. Spatial Databases: with Application to GIS; Elsevier: Amsterdam,
The Netherlands, 2001.

26. Zlatanova, S. 3D geometries in spatial DBMS. In Innovations in 3D Geo Information Systems; Springer:
Berlin/Heidelberg, Germany, 2006; pp. 1-14.

27. Wang, X,; Love, PE.; Kim, MJ.; Park, C.S.; Sing, C.P; Hou, L. A conceptual framework for integrating
building information modeling with augmented reality. Autom. Construct. 2013, 34, 37-44. [CrossRef]

28. Nagel, C.; Stadler, A.; Kolbe, T.H. Conceptual requirements for the automatic reconstruction of building
information models from uninterpreted 3D models. In Proceedings of the Academic Track of the Geoweb
2009-3D Cityscapes Conference, Vancouver, BC, Canada, 27-31 July 2009.

29. El-Mekawy, M.; Ostman, A.; Hijazi, . A unified building model for 3D urban GIS. ISPRS Int.]. Geo-Inf. 2012,
1,120-145. [CrossRef]

30. Cheng,].C; Deng, Y.; Anumba, C. Mapping BIM schema and 3D GIS schema semi-automatically utilizing
linguistic and text mining techniques. J. Inf. Technol. Construct. 2015, 20, 193-212.

31. Kang, TW.; Hong, C.H. A study on software architecture for effective BIM/GIS-based facility management
data integration. Autom. Construct. 2015, 54, 25-38. [CrossRef]

32. Agoub, A,; Kunde, F,; Kada, M. Potential of graph databases in representing and enriching standardized
Geodata. Tagungsband der 2016, 36, 1-9.

33. Stadler, A.; Nagel, C.; Kénig, G.; Kolbe, T.H. Making interoperability persistent: A 3D geo database based on
CityGML. In 3D Geo-Information Sciences; Springer: Berlin/Heidelberg, Germany, 2009; pp. 175-192.

34. Robert McNeel & Associates. Rhinoceros: 3D Computer Graphics and Computer-Aided Design Application).
2019. Available online: https://www.rhino3d.com/ (accessed on 27 May 2019).

35. IFC++. IFC++: Open Source IFC Implementation for C++). 2019. Available online: http://ifcquery.com/
(accessed on 27 May 2019).

36. The CGAL Project. CGAL User and Reference Manual, 4th ed.; CGAL Editorial Board: Tel-Aviv, Israel, 2019.

37. Li, W,; Zlatanova, S.; Yan, J.; Diakite, A.; Aleksandrov, M. A Geo-Database Solution for the Management
and Analysis of Building Model With Multi-Source Data Fusion. Int. Arch. Photogramm. Remote Sens. Spat.
Inf. Sci. 2019, 42, 55-63. [CrossRef]

38. Emgard, L.; Zlatanova, S. Implementation alternatives for an integrated 3D Information Model. In Advances
in 3D Geoinformation Systems; Springer: Berlin/Heidelberg, Germany, 2008; pp. 313-329.

39. Zlatanova, S.; Pu, S.; Bronsvoort, W. Freeform curves and surfaces in DBMS-a step forward in spatial
data integration. In Proceedings of the ISPRS Commission IV Symposium on ‘Geospatial Databases for
Sustainable Development, Goa, India, 27-30 September 2006; pp. 27-30.

@ (© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
@ article distributed under the terms and conditions of the Creative Commons Attribution

(CC BY) license (http:/ /creativecommons.org/licenses/by/4.0/).

www.manaraa.com

http://dx.doi.org/10.3390/buildings5010100
http://dx.doi.org/10.1145/1456650.1456651
http://dx.doi.org/10.3390/s91007771
http://dx.doi.org/10.1016/j.autcon.2012.10.012
http://dx.doi.org/10.3390/ijgi1020120
http://dx.doi.org/10.1016/j.autcon.2015.03.019
 https://www.rhino3d.com/
 http://ifcquery.com/
http://dx.doi.org/10.5194/isprs-archives-XLII-4-W20-55-2019
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

Reproduced with permission of copyright owner. Further reproduction
prohibited without permission.

www.manharaa.com

	Introduction
	Existing Approaches and Challenges
	Contributions
	Organization

	Background and Related Work
	3D City Models and PIM
	Smart Built Environment and Data Fusion Opportunities
	Geo-data Modeling in Spatial DBMS
	CityGML and IFC Standards
	Related Work for CityGML and IFC Integration

	Precinct Information Modeling (PIM) with Data Fusion
	Conceptual PIM at Campus Scale
	Building Model
	Integrated Building Model (IBM)
	Conversion from IFC & CityGML to IBM

	Sensor Model
	LandUse Model
	CityFurniture Model
	Transportation Model
	Vegetation Model
	Terrain Model

	Database Solutions for PIM
	Case Study
	Conceptual Design
	Relational Database Design

	Discussion and Conclusions
	IFC Building Model
	CityGML Building Model
	References

